Ձգողականություն (միջազգային եզրույթը՝ գրավիտացիա, լատիներենgravitas՝ «ծանրություն» բառից), տիեզերական ձգողություն, ունիվերսալ հիմնարար փոխազդեցությունը բոլոր նյութական մարմինների միջև։ Փոքր արագությունների և թույլ ձգողական փոխազդեցության դեպքում նկարագրվում է Նյուտոնի ձգողականության օրենքով, ընդհանուր դեպքում՝ Այնշտայնիհարաբերականության ընդհանուր տեսությամբ: Չորս հիմնական փոխազդեցություններից ամենաթույլն է։ Քվանտային սահմանում ձգողականությունը պետք է նկարագրվի ձգողականության քվանտային տեսությամբ, որը դեռ ամբողջովին մշակված չէ։
Ձգողական փոխազդեցությունը

Տիեզերական ձգողականության օրենքը
Դասական մեխանիկայի շրջանակներում ձգողական փոխազդեցությունը նկարագրվում է Նյուտոնի տիեզերական ձգողականության օրենքով, ըստ որի՝ {\displaystyle m_{1}} և {\displaystyle m_{2}} զանգվածներով նյութական կետերի գրավիտացիոն ձգողականության ուժը ուղիղ համեմատական է զանգվածներին և հակադարձ համեմատական է այդ կետերի միջև {\displaystyle r} հեռավորության քառակուսուն, այսինքն՝{\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}}
:
Այստեղ {\displaystyle G} -ն գրավիտացիոն հաստատունն է, G = 6, 6725×10-11 Ն·մ2/կգ2։
Գրավիտացիոն դաշտը պոտենցիալ վեկտորական դաշտ է։ Դա նշանակում է, որ կարելի է մտցնել մարմինների զույգի գրավիտացիոն ձգողականության պոտենցիալ էներգիա, որը չի փոփոխվի մարմինները փակ կոնտուրով տեղափոխելուց հետո։ Գրավիտացիոն դաշտի պոտենցիալ լինելուց բխում է կինետիկ և պոտենցիալ էներգիաների գումարի պահպանման օրենքը, ինչպես նաև հաճախ է հեշտանում մարմինների շարժման ուսումնասիրման խնդիրը գրավիտացիոն դաշտում։
Նյուտոնյան մեխանիկայի շրջանակներում գրավիտացիոն փոխազդեցությունը հեռազդեցություն է։ Դա նշանակում է, որ որքան էլ մեծ լինի շարժվող մարմնի զանգվածը, տարածության ցանկացած կետում գրավիտացիոն պոտենցիալը կախված է միայն ժամանակի տվյալ պահին մարմնի ունեցած դիրքից։
Մեծ տիեզերական մարմինները՝ մոլորակները, աստղերը, գալակտիկաները ունեն հսկայական զանգված և հետևաբար ստեղծում են ուժեղ գրավիտացիոն դաշտեր։
Գրավիտացիան ամենաթույլ փոխազդեցությունն է։ Սակայն, քանի որ գործում է ցանկացած հեռավորության վրա և ցանկացած զանգված դրական է, այն շատ կարևոր ուժ է ամբողջ Տիեզերքում։ Համեմատության համար կարելի է նշել, որ մարմինների էլեկտրամագնիսական փոխազդեցությունը տիեզերական մասշտաբներում փոքր է, քանի որ այդ մարմինների լրիվ էլեկտրական լիցքը զրո է (նյութը որպես ամբողջություն էլեկտրաչեզոք է)։
Ի տարբերություն մյուս փոխազդեցությունների, գրավիտացիան տարածվում է ողջ նյութի և էներգիայի վրա։ Մինչ օրս չեն հայտնաբերվել այնպիսի օբյեկտներ, որոնք ընդհանրապես չեն մասնակցում գրավիտացիոն փոխազդեցությանը։
Իր գլոբալ բնույթի հետևանքով գրավիտացիան պատասխանատու է նաև այնպիսի խոշորամասշտաբ երևույթների համար, ինչպիսիք են գալակտիկաների կառուցվածքը, սև խոռոչները և Տիեզերքի ընդարձակումը։ Տարրական աստղագիտական երևույթները՝ մոլորակների ուղեծրերը, Երկրի մակերևույթի պարզ ձգողականությունը, մարմինների անկումը նույնպես պայմանավորված են գրավիտացիայով։
Ձգողականության տեսության զարգացումները
Համարժեքության սկզբունքը

Գալիլեո Գալիլեյ, կարևորագույն հայտնագործությունների հեղինակ
Տիեզերական ձգողության տեսության հիմքում ընկած է Այնշտայնի համարժեքության սկզբունքը։ Համաձայն այդ սկզբունքի, գրավիտացիոն դաշտում {\displaystyle -{\vec {g}}} արագացումով շարժվող հաշվարկման համակարգերում բնության օրինաչափություններն ընկալվում են միատեսակ (համարժեքության ուժեղ սկզբունք)[1]․ այդ իմաստով գրավիտացիոն դաշտը և համապատասխան արագացումով շարժվող համակարգը համարժեք են։ Կարելի է ձևակերպել և այսպես. ազատ ընկնող հաշվարկման համակարգում գրավիտացիոն դաշտն անհետանում է։ Այս սկզբունքը հիմնված է մարմնի իներտ ({\displaystyle m_{i}}) և ծանր ({\displaystyle m_{h}}) զանգվածների հավասարության փաստի վրա (Լ․ Էտվեշի փորձը)։ Իներտ զանգվածը մտնում է Նյուտոնի երկրորդ օրենքի, իսկ ծանր զանգվածը՝ տիեզերական ձգողության օրենքի բանաձևում․{\displaystyle m_{i}{\vec {a}}={\vec {F}}={\frac {Gm_{h}M{\vec {r}}}{{r}^{3}}}}
։
Ընդունելով, որ {\displaystyle m_{i}} = {\displaystyle m_{h}}, կստանանք, որ բոլոր մարմինները M մարմնի գրավիտացիոն դաշտում շարժվում են{\displaystyle {\vec {a}}={\frac {Gm_{h}M{\vec {r}}}{{r}^{3}}}}
արագացումով։
Ճիշտ նույն օրենքով կշարժվի մասնիկը, եթե նրա շարժումը դիտվի արագացումով շարժվող համակարգում, երբ գրավիտացիոն դաշտ չկա։
Այսպիսով, համարժեքության սկզբունքը կարելի է ձևակերպել որպես իներտ և ծանր գանգվածների հավասարության պահանջ։
Համարժեքության սկզբունքի հայտնագործումն իրավացիորեն վերագրվում է Գալիլեյին։ Այնշտայնի արժանիքն այն է, որ նա հիշատակված փաստերը հասցրեց սկզբունքի մակարդակի և այնուհետև ընդհանրացրեց իրական դաշտերի համար, որոնք համասեռ և հաստատուն չեն (համարժեքության լոկալ սկզբունք)։ Հաշվարկման համակարգի համապատասխան ընտրությամբ տարածության-ժամանակի բավականաչափ փոքր տիրույթում գրավիտացիոն դաշտը կարելի է վերացնել։ Քանի որ իրական գրավիտացիոն դաշտը համասեռ չէ՝ ձգող մարմնից հեռանալիս նվազում է և անվերջությունում դառնում զրո, ապա այն համարժեք է տարբեր արագացումներով շարժվող անվերջ թվով հաշվարկման համակարգերի։ Համարժեքություն մի ընդհանուր համակարգի հետ գոյություն չունի։
